tion, thermal motion and our atom-numbering scheme, and Fig. 3 displays the molecular packing. All computer programs from the *TEXSAN* crystalstructure-analysis package (Molecular Structure Corporation, 1985).

Related literature. In a similar compound (5a,11aepoxy-5a,6a,7,10,10a,11a-hexahydro-7-methoxy-5,6,-9,11,12-naphthacenepentone), the same *cis* stereochemistry exists between the O atoms of the epoxide ring at C5a and C11a, and the H atoms at C6a and C10a (Gupta, Jackson & Stoodley, 1985).

References

- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, p. 71 (scattering factors), p. 148 (anomalous dispersion). Birmingham: Kynoch Press. (Present distributor Kluwer Academic P:blishers, Dordrecht.)
- GUPTA, R. C., JACKSON, D. A. & STOODLEY, R. J. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 525–533.
- JACKSON, D. A. & STOODLEY, R. J. (1981). J. Chem. Soc. Chem. Commun. pp. 478-479.
- Molecular Structure Corporation (1985). TEXSAN Structure Analysis Package. MSC, 3304 Longmire Drive, College Station, TX 77840, USA.
- ROBINSON, P. D., HINCKLEY, C. C. & KIBALA, P. A. (1988). Acta Cryst. C44, 1365-1368.

Acta Cryst. (1989). C45, 2006-2010

Structures of Three Pseudoguaianolides: Parthenin, Hymenolin $(11\beta, 13$ -Dihydroparthenin) and Bipinnatin

BY FRANK R. FRONCZEK, DAVID VARGAS AND NIKOLAUS H. FISCHER

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

GIACOMO CHIARI

Dipartimento di Scienze della Terra, Via San Massimo 22, 10123 Torino, Italy

AND FELIPE BALZA AND G. H. NEIL TOWERS

Department of Botany, University of British Columbia, Vancouver, BC V6T 2B1, Canada

(Received 27 December 1988; accepted 3 July 1989)

Abstract. Parthenin, $C_{15}H_{18}O_4$, $M_r = 262.3$, tetragonal, $P4_1$, a = 6.862 (1), c = 28.681 (8) Å, V =1350.5 (8) Å³, Z = 4, $D_x = 1.290 \text{ g cm}^{-3}$, $\lambda(\text{Cu } K\alpha)$ = 1.54184 Å, $\mu = 7.25 \text{ cm}^{-1}$, F(000) = 560, T =298 K, R = 0.036 for 1316 observations with I >Hymenolin $(11\beta, 13$ -dihydroparthenin), $1\sigma(I)$. $C_{15}H_{20}O_4$, $M_r = 264.3$, monoclinic, P_{21} , a =6.495 (1), b = 28.380 (6), c = 7.587 (1) Å, 102.90 (1)°, V = 1363.2 (7) Å³, Z = 4, $\beta =$ 1757 observations with $I > 0.5\sigma(I)$. Bipinnatin, $C_{15}H_{20}O_4$, $M_r = 264.3$, orthorhombic, $P2_12_12_1$, a =9.231 (1), b = 9.713 (2), c = 15.453 (2) Å, V =1385.5 (6) Å³, Z = 4, $D_x = 1.267$ g cm⁻³, μ (Cu K α) = 7.07 cm⁻¹, F(000) = 568, T = 299 K, R = 0.058 for 1145 observations with $I > 3\sigma(I)$. The sevenmembered ring of parthenin has a chair conformation with a pseudo mirror passing through C10, and asymmetry parameter $\Delta C_s = 4.3^\circ$. The cyclopentenone and lactone rings both have envelope conformations with C5 at the flap, $\Delta C_s = 5.2^\circ$ and C7 at the flap, $\Delta C_s = 0.7^\circ$, respectively. Molecules are linked in

chains along the symmetry axis by hydrogen bonds involving the hydroxyl group and lactone carbonyl, O…O distance 2.805 (5) Å. The crystal structure of hymenolin contains two independent molecules. In both, the five-membered rings are in conformations closely resembling those of parthenin. The sevenmembered ring of one molecule has a twist-chair conformation with C10 lying on the pseudo diad, and asymmetry parameter $\Delta C_2 = 3.9^{\circ}$, while the other molecule has an asymmetric seven-membered ring. Molecules are linked in chains of alternating molecule types, by hydrogen bonds involving hydroxy groups and lactone carbonyl O atoms. O.O distances are 2.855 (5) and 2.878 (5) Å. Hymenolin was isolated from Hymenoclea salsola T. and G. with unresolved stereochemistry at C11 [Toribio & Geissman (1968). Phytochemistry, 7, 1623-1630]. The seven-membered ring of bipinnatin also has two conformations in the crystal, but both exist at the same site as a ca 70-30% disorder of atoms C8 and C9. The seven-membered ring of the major conformer has the parthenin conformation, with $\Delta C_s =$ $6 \cdot 1^{\circ}$, while the minor conformer has the twist-chair

0108-2701/89/122006-05\$03.00

© 1989 International Union of Crystallography

2006

01

02 03

04 C1

C2 C3 C4 C5 C6 C7

C8

C9 C10

C11

C12 C13

C14

C15

01 02

03

04 C1 C2 C3

C4

C5

C6 C7

C8 C9

C10

C11 C12

C13

C14 C15 O1' O2'

03' 04' C1' C2' C3' C4' C5' C6'

C7' C8' C9'

C10' C11'

C12'

C13' C14'

C15'

conformation of hymenolin, with $\Delta C_2 = 3 \cdot 1^\circ$. The cyclopentanone ring has the envelope conformation with C2 at the flap and $\Delta C_s = 1 \cdot 3^\circ$, while the lactone ring has the half-chair conformation with C12 on the pseudo diad, and $\Delta C_2 = 2 \cdot 7^\circ$. Molecules are linked in chains along the **b** direction by hydrogen bonds involving the hydroxy group and the lactone carbonyl, with O…O distance 2.774 (7) Å.

Experimental. Parthenin (I): crystal size 0.28×0.40 $\times 0.52$ mm, space group determination by Laue symmetery 4/m, systematic absence 00l with $l \neq 4n$ and presumption of absolute configuration as determined for bromoambrosin (Emerson, Herz, Caughlan & Witters, 1966), cell dimensions for setting angles of 25 reflections $70 > 2\theta > 66^\circ$, data collection on Enraf-Nonius CAD-4 diffractometer, graphite monochromator, Cu K radiation, ω -2 θ scans designed to yield $I = 50\sigma(I)$, scan rates $0.20-5.0^{\circ}$ min⁻¹. Data having $4 < 2\theta < 153^{\circ}, 0 \le h \le$ 8, $0 \le k \le 8$, $0 \le l \le 36$ measured, corrected for background, Lorentz, polarization and absorption (ψ scans, minimum relative transmission 83.7%), 1456 unique data. Three standard reflections (200, 020, 008), no significant variation. Structure solved using RANTAN (Yao Jia-Xing, 1981), refined by fullmatrix least squares based on F, $w = 4F_o^2[\sigma^2(I) +$ $(0.02F_o^2)^2]^{-1}$ with Enraf-Nonius SDP (Frenz & Okaya, 1980), scattering factors of Cromer & Waber (1974), data with $I > \sigma(I)$. Non-H atoms anisotropic; H atoms from difference maps, fixed contributions, $B = 5.0 \text{ Å}^2$. Secondary-extinction coefficient 4.4 (3) × 10^{-6} . Final R = 0.036, wR = 0.037, s = 1.230 for 172 variables. Max. shift 0.01σ in final cycle, max. residual density 0.10, min. $-0.13 \text{ e} \text{ Å}^{-3}$.

Hymenolin (11 β ,13-dihydroparthenin) (II): crystal size 0·20 × 0·40 × 0·56 mm, space group from Laue symmetry 2/m, systematic absences 0k0 with k odd and known chirality of material, $20 \le 2\theta \le 24^{\circ}$ for cell dimensions, data collection as for parthenin, Mo $K\alpha$ radiation, scan rates 0·49–5·0° min⁻¹, $2 < 2\theta <$ 50°, $0 \le h \le 7$, $0 \le k \le 33$, $-9 \le l \le 9$, no absorption correction, 2440 unique data ($R_{int} = 0.025$). Standards (200, 040, 001), no decay. Solved using *MULTAN*78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978), refined with $I > 0.5\sigma(I)$ data, non-H atoms anisotropic, H atoms located by ΔF synthesis, fixed contributions, B = 5.0 Å², R =0.060, wR = 0.054, S = 1.812, 342 variables. Max.

Table 1. Coordinates and equivalent isotropic thermal parameters for parthenin

$B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* a_{j.} a_{j.}$ This expression for B_{eq} is also used in Tables 2 and 3.	

x	у	Z	$B_{eq}(A^2)$
0.7510 (3)	0.3622 (3)	0	4.28 (6)
0.9773 (3)	0.3323 (4)	0.0550 (8)	5.28 (7)
0.4633 (4)	0.6423 (4)	-0.0305 (9)	7.85 (9)
0.4712 (3)	0.2382 (3)	-0.1187 (7)	4.34 (6)
0.6174 (4)	0.3827 (4)	-0.1294 (9)	3.49 (7)
0.5084 (5)	0.5597 (5)	-0.1481(12)	4·9 (Ì)
0.4459 (5)	0.6734 (5)	-0.1137(13)	5.8 (1)
0.5179 (5)	0.5981 (4)	- 0.0686 (12)	4.84 (9)
0.6854 (4)	0.4533 (4)	- 0.0804 (10)	3.26 (7)
0.7021 (4)	0.2846 (4)	-0.0461 (9)	3 19 (7)
0.8570 (4)	0.1238 (4)	-0.0561 (9)	3.26 (7)
0.9681 (4)	0.1164 (4)	-0.1025 (10)	3.66 (7)
0.8478 (5)	0.1020 (5)	-0.1470 (10)	4 13 (8)
0.7596 (4)	0.2932 (4)	-0.1645 (10)	3 78 (8)
0.9947 (5)	0.1449 (5)	- 0.0160 (10)	4.04 (8)
0.9151 (4)	0.2864 (4)	0.0171 (10)	3 84 (8)
1-1655 (6)	0.0625 (7)	-0.0083 (14)	7.7 (1)
0.9136 (5)	0.4329 (5)	-0.1839 (12)	51(1)
0.8703 (5)	0.5811 (4)	-0.0794 (12)	4.43 (9)
			• • •

 Table 2. Coordinates and equivalent isotropic thermal parameters for hymenolin

x	у	Z	$B_{eq}(\text{\AA}^2)$
0.8371 (6)	0	0.7039 (5)	4.04 (9)
0.7966 (6)	-0.0597 (1)	0.5109 (5)	4.6 (1)
0.9720 (8)	0.0342 (2)	1.0972 (6)	6.2 (1)
0.6294 (5)	0.1281 (1)	0.8363 (5)	4.42 (9)
0.8447 (8)	0.1314(2)	0.8112(7)	3.5 (1)
0.977 (1)	0.1503 (2)	0.9861 (8)	4.6 (1)
1.047 (1)	0.1182 (2)	1.1051 (8)	5.0 (2)
0.9803 (9)	0.0720 (2)	1.0226 (7)	4.1 (1)
0.9154 (8)	0.0801 (2)	0.8156 (7)	3.4 (1)
0.7425 (8)	0.0458 (2)	0.7245 (7)	3.4 (1)
0.6082 (8)	0.0282 (2)	0.5337 (7)	3.3 (1)
0.7009 (9)	0.0936 (2)	0.4196 (8)	4.3 (2)
0.686 (1)	0.1453 (2)	0.4760 (9)	5.1 (2)
0.8381 (9)	0.1631 (2)	0.6454 (8)	4.4 (1)
0.5711 (9)	0.0096 (2)	0·4439 (7)	3.7 (1)
0.7436 (8)	-0.0210 (2)	0.5493 (7)	3.4 (1)
0.357 (1)	-0.0120 (2)	0.4470 (8)	4.7 (2)
1.054 (1)	0.1758 (3)	0.6090 (9)	5.8 (2)
1.1276 (9)	0.0711 (2)	0.7569 (8)	4.7 (2)
0.2781 (6)	0.7516(1)	- 0.0282 (5)	4.29 (9)
0.5413 (6)	0.7020 (2)	-0.0151 (6)	5.5 (1)
0.0047 (7)	0.7916 (2)	0.2006 (6)	6.5 (1)
-0.0340 (6)	0.8701 (1)	-0.2224 (5)	3.94 (9)
0.1362 (8)	0.8823 (2)	-0.0718 (7)	3.2 (1)
0.0312 (8)	0.9072 (2)	0.0651 (8)	3.9 (1)
-0.0149 (8)	0.8756 (2)	0.1812 (8)	4.2 (1)
0.0568 (8)	0.8282 (2)	0.1473 (8)	43(1)
0.2145 (8)	0.8359 (2)	0.0218 (7)	3.1 (1)
0.1979 (8)	0.7952 (2)	- 0·1177 (7)	3.3 (1)
0.3194 (8)	0.7993 (2)	- 0.2726 (7)	3.9 (1)
0.345 (1)	0.8475 (2)	- 0.3583 (7)	4.6 (2)
0.4421 (9)	0.8865 (2)	- 0.2341 (7)	3.7 (1)
0.2936 (8)	0.9144 (2)	- 0.1407 (7)	3.5 (1)
0.5254 (8)	0.7746 (2)	- 0·1948 (7)	3.6 (1)
0.4584 (9)	0.7374 (2)	- 0.0727 (8)	4.0 (1)
0.635 (1)	0.7516 (2)	- 0·3329 (9)	5.0 (2)
0.4221 (9)	0.9483 (2)	- 0.0003 (9)	4.8 (2)
0.4307 (8)	0.8379 (2)	0.1559 (7)	3.4 (1)

shift $< 0.01\sigma$, max. residual density 0.22, min. $-0.26 \text{ e} \text{ Å}^{-3}$.

Bipinnatin (III): crystal size $0.21 \times 0.38 \times 0.56$ mm, absences h00 with h odd, 0k0 with k odd, 00l with l odd, $60 < 2\theta < 67^{\circ}$ for cell dimensions, data collection as for parthenin, Cu K α radiation, scan rates 0.71– 4.0° min⁻¹, $4 < 2\theta < 150^{\circ}$, $0 \le h \le$

 Table 3. Coordinates and equivalent isotropic thermal

 parameters for bipinnatin

•			
x	у	Z	$B_{eq}(Å^2)$
0.1502 (4)	0.7394 (4)	0.4912 (2)	5.81 (8)
0.0585 (4)	0.9433 (4)	0.4595 (3)	7.7 (1)
0.0028 (4)	0.4974 (4)	0.5642 (2)	7.1 (1)
0.0673 (4)	0.2136 (4)	0-4019 (3)	6.38 (9)
0.2565 (5)	0.3891 (5)	0.4033 (3)	4.5 (1)
0.1974 (6)	0.2576 (5)	0.4439 (4)	5.8 (1)
0.1607 (6)	0.3064 (6)	0.5350 (3)	6.2 (1)
0.0944 (4)	0.4447 (5)	0.5197 (3)	5·2 (1)
0.1524 (5)	0.5058 (5)	0.4331 (3)	4.07 (9)
0.2413 (5)	0.6328 (5)	0.4538 (3)	4.8 (1)
0-3199 (6)	0.7089 (6)	0.3771 (4)	6-3 (1)
0-3122 (6)	0.3805 (6)	0.3075 (3)	5.9 (1)
0.2294 (6)	0.8301 (6)	0.3630 (4)	5.9 (1)
0.1346 (6)	0.8493 (5)	0.4408 (4)	5.6 (1)
0.2243 (7)	0.9182 (7)	0.2966 (4)	7.6 (2)
0.2039 (8)	0.3368 (7)	0.2382 (4)	7.6 (2)
0.0172 (5)	0.5357 (5)	0.3775 (3)	5.1 (1)
0.3373 (9)	0.6319 (8)	0.2830 (5)	5·8 (2)*
0.4229 (20)	0.6268 (19)	0.3243 (11)	6.1 (4)*
0.4120 (9)	0.4940 (9)	0.2892 (5)	6·1 (2)*
0.3461 (18)	0.5417 (17)	0.2692 (9)	4.7 (3)*
	x 0-1502 (4) 0-0585 (4) 0-0028 (4) 0-0673 (4) 0-2565 (5) 0-1974 (6) 0-1607 (6) 0-0944 (4) 0-1524 (5) 0-2413 (5) 0-3122 (6) 0-2294 (6) 0-2294 (6) 0-2243 (7) 0-2039 (8) 0-0172 (5) 0-3373 (9) 0-4229 (20) 0-4420 (9) 0-3461 (18)	x y 0.1502 (4) 0.7394 (4) 0.0585 (4) 0.9433 (4) 0.0585 (4) 0.9433 (4) 0.0028 (4) 0.9974 (4) 0.0673 (4) 0.2136 (4) 0.2565 (5) 0.3891 (5) 0.1974 (6) 0.2576 (5) 0.1974 (6) 0.2576 (5) 0.1974 (5) 0.3054 (6) 0.0944 (4) 0.4447 (5) 0.1524 (5) 0.6328 (5) 0.2413 (5) 0.6328 (5) 0.2312 (6) 0.3305 (6) 0.2243 (7) 0.9182 (7) 0.2239 (8) 0.3368 (7) 0.0172 (5) 0.5357 (5) 0.3373 (9) 0.6319 (8) 0.4120 (20) 0.6268 (19) 0.4120 (9) 0.4940 (9) 0.33461 (18) 0.5417 (17)	x y Z 0-1502 (4) 0-7394 (4) 0-4912 (2) 0-0585 (4) 0-9433 (4) 0-4595 (3) 0-0028 (4) 0-4974 (4) 0-5642 (2) 0-0673 (4) 0-2136 (4) 0-4019 (3) 0-2565 (5) 0-3891 (5) 0-4033 (3) 0-1974 (6) 0-2576 (5) 0-4439 (4) 0-1607 (6) 0-3064 (6) 0-5350 (3) 0-0944 (4) 0-4447 (5) 0-5197 (3) 0-1524 (5) 0-6328 (5) 0-4331 (3) 0-2413 (5) 0-6328 (5) 0-4338 (3) 0-3122 (6) 0-3805 (6) 0-3771 (4) 0-3122 (6) 0-3805 (6) 0-3630 (4) 0-1324 (6) 0-8301 (6) 0-3630 (4) 0-2294 (6) 0-8301 (6) 0-3630 (4) 0-2294 (6) 0-8301 (6) 0-3630 (4) 0-2294 (6) 0-8303 (5) 0-4408 (4) 0-2293 (7) 0-9182 (7) 0-2966 (4) 0-2039 (8) 0-3368 (7) 0-2382 (4) 0-0172 (5) 0-5337 (5) 0-3775 (3)

* Starred atoms were refined isotropically, and isotropic B is given. Atoms labelled with A have population 0.70, those with B 0.30.

Fig. 1. ORTEP (Johnson, 1976) representation of parthenin.

Fig. 2. ORTEP drawing of hymenolin $(11\beta, 13$ -dihydroparthenin), unprimed molecule.

11, $0 \le k \le 12$, $0 \le l \le 19$, minimum relative transmission 76.92%, 1652 unique data. Standards (200, 040, 006), no decay. Solved using *MULTAN*78 (Main *et al.*, 1978), refined with $I > 3\sigma(I)$ data, non-H atoms anisotropic except for disorder region, H atoms located in difference maps, fixed contributions B = 7.0 Å². Atoms C8 and C9 disordered into two orientations, with ~70% occupancy (C8A and C9A) and ~30% (C8B and C9B); These refined isotropically. Final R = 0.058, wR = 0.049, S =1.726, 170 variables. Max. shift 0.23σ , max. residual density 0.20, min. -0.18 e Å⁻³.

Atomic parameters for non-H atoms are given in Tables 1–3; the molecules are depicted in Figs. 1–4. Conformations of molecules are specified by torsion

Fig. 3. ORTEP drawing of hymenolin (11 β ,13-dihydroparthenin), primed molecule.

Fig. 4. ORTEP representation of bipinnatin. The minor (30%) conformer is labelled B.

Table 4. Torsion angles (°)

E.s.d.'s $\sim 0.6^{\circ}$ for parthenin, 0.6° for hymenolin and 0.8° for the ordered portion of bipinnatin. Torsion angles involving disordered atoms of bipinnatin have e.s.d.'s $\sim 1^{\circ}$ for those involving major contributor A, and $\sim 3^{\circ}$ for those involving minor contributor B (in parentheses).

	Parthenin	Hymenolin	Hymenolin'	Bipinnatin	
C1-C2-C3-C4	4-8	3.1	2.6	41-4	
C2-C3-C4-C5	16-1	16.2	15-3	- 25.7	
C3-C4-C5-C1	- 28.7	- 28.3	- 26.1	0-4	
C4-C5-C1-C2	30.0	28.3	27.0	26.7	
C5-C1-C2-C3	- 23-3	-21.5	- 19.7	- 43.0	
C1-C5-C6-C7	64-3	47.8	59-2	67.7	
C5-C6-C7-C8	-9.3	21.1	- 35-0	- 14.6	(- 57.4)
C6C7C8C9	- 57-3	- 77.5	54.8	- 55.7	(75.8)
C7-C8-C9-C10	80.0	76-0	- 83.8	87.0	(-92.9)
C8-C9-C10-C1	- 61.6	- 50-9	42.0	- 71-5	(45-9)
C9-C10-C1-C5	63.6	61.9	42.5	69-3	(38-4)
C10C1C5C6	- 81.1	- 82.7	- 88.8	- 82.8	
01-C6-C7-C11	-6.8	21.9	- 29.6	- 18-4	
C6C7C11C12	6-6	- 21.3	31-1	16-5	
C7-C11-C12O1	-4.0	13.9	- 22.8	- 8.4	
C11-C12-O1-C6	-0.8	0.7	3.7	- 4.7	
C12-O1-C6-C7	4.9	- 14.8	16.4	14.8	
O2-C12-C11-C13	- 7.0	69-5	35-1	- 8.3	

Table 5. Bond distances (Å)

In the disordered region of bipinnatin, only distances involving the major conformer (A) are given.

	Parthenin	Hymenolin	Hymenolin'	Bipinnatin
01-C6	1.464 (5)	1.460 (5)	1.451 (5)	1.454 (7)
01C12	1.334 (5)	1.335 (5)	1.351 (6)	1.329 (8)
O2C12	1.211 (6)	1.206 (5)	1.177 (6)	1.188 (8)
O3C4	1.194 (7)	1.220 (6)	1.191 (6)	1.205 (8)
04C1	1.444 (5)	1.456 (5)	1.444 (5)	
O4-C2	_ ``	_ ` `	_ ``	1.430 (8)
C1C2	1.524 (7)	1.510 (7)	1.537 (6)	1.524 (9)
C1C5	1.559 (6)	1.524 (7)	1.527 (6)	1.555 (8)
C1-C10	1.530 (6)	1.539 (7)	1.545 (6)	1.570 (8)
C2-C3	1.330 (8)	1.289 (8)	1.337 (7)	1.524 (9)
C3C4	1.477 (7)	1.476 (7)	1.466 (7)	1-495 (9)
C4C5	1.556 (7)	1.549 (7)	1.562 (7)	1.559 (8)
C5-C6	1.524 (6)	1.530 (6)	1.554 (6)	1.516 (8)
C5-C15	1.542 (6)	1.561 (6)	1.540 (6)	1.543 (8)
C6C7	1.559 (6)	1.554 (6)	1.559 (7)	1.574 (9)
C7C8	1.536 (6)	1.535 (7)	1.539 (7)	1.64 (2)
C7-C11	1.495 (7)	1.532 (7)	1.510 (6)	1.460 (10)
C8C9	1.523 (7)	1.539 (8)	1.497 (7)	1.51 (2)
C9C10	1.530 (7)	1.522 (7)	1.538 (6)	1.46 (2)
C10-C14	1.532 (7)	1.531 (7)	1.536 (7)	1.524 (10)
C11C12	1.465 (6)	1.501 (7)	1.529 (7)	1.499 (9)
CU1 CU2	1.220 (7)	1 536 (7)	1 570 (7)	1.229 (0)

angles in Table 4, while bond distances and angles are listed in Tables 5-7.*

Related literature. Various plant sources for parthenin (Fischer, Olivier & Fischer, 1979); characterization of parthenin (Herz, Watanabe, Miyazaki & Kishida, 1962); isolation of hymenolin from Hymenoclea salsola, and characterization (Toribio & Geissman, 1968; Balza & Towers, 1988); isolation of bipinnatin from Parthenium bipinnatifidum, and characterization (Rodriguez, Yoshioka & Mabry, 1971); crystal structure of stramonin-B (Fortier, DeTitta & Grieco, 1979); crystal structure of hysterin

Table 6. Bond angles (°) in parthenin and hymenolin

	Parthenin	Hymenolin	Hymenolii
C6-01-C12	112.6 (4)	111.8 (4)	112.2 (4)
04-C1-C2	106.4 (4)	106.5 (4)	105.6 (4)
04-C1-C5	103-3 (4)	103-3 (4)	106-1 (4)
04-C1-C10	107.9 (4)	107.0 (4)	108.7 (4)
C2-C1-C5	102.5 (4)	102.1 (4)	103.6 (4)
C2-C1-C10	113.7 (4)	114.7 (5)	112.6 (4)
C5-C1-C10	121.8 (4)	112.0 (4)	119.3 (4)
C1-C2-C3	111.3 (5)	114-1 (5)	109.6 (5)
C2-C3-C4	109.7 (5)	107.8 (5)	111.9 (5)
O3-C4-C3	127.4 (5)	128.6 (5)	128.0 (5)
O3-C4-C5	126.3 (5)	124.8 (5)	127.1 (5)
C3C4C5	106.3 (5)	106-6 (5)	104.8 (5)
C1-C5-C4	100.0 (4)	100.1 (4)	102.0 (4)
C1-C5-C6	111.7 (4)	114-2 (4)	111.0 (4)
C1-C5-C15	116-1 (4)	115-5 (4)	115-9 (4)
C4-C5-C6	113.6 (4)	111.7 (4)	110.8 (4)
C4-C5-C15	103.9 (4)	102.0 (4)	103-2 (4)
C6C5C15	111.0 (4)	111.9 (4)	113.0 (4)
01-C6-C5	109.0 (4)	109.3 (4)	110.6 (4)
01-C6-C7	105.5 (4)	105-3 (4)	103-1 (4)
C5-C6-C7	118.0 (4)	118.6 (4)	119.2 (4)
C6C7C8	121-4 (4)	117.7 (4)	120.5 (4)
C6-C7-C11	102.8 (4)	102.1 (4)	103.0 (4)
C8-C7-C11	110.9 (4)	112-3 (4)	114.0 (4)
C7-C8-C9	117.4 (4)	114-2 (4)	117.4 (4)
C8-C9-C10	115.7 (4)	118.7 (5)	116.9 (4)
C1-C10-C9	112.4 (4)	113.0 (4)	112.5 (4)
C1-C10-C14	115-3 (4)	115.2 (4)	115.7 (4)
C9-C10-C14	112.5 (5)	112.0 (5)	110.0 (4)
C7-C11-C12	109 1 (4)	105.0 (4)	102.2 (4)
C7-C11-C13	130.4 (5)	114.2 (4)	115.9 (4)
C12-C11-C13	120.5 (5)	109.5 (4)	111-1 (4)
01-C12-O2	121.8 (5)	121.4 (5)	120.8 (5)
01-C12-C11	109.5 (4)	110.4 (4)	109.0 (5)
02-C12-C11	128.6 (5)	128-2 (5)	130-2 (5)

Table 7. Bond angles (°) in bipinnatin

C6	113.7 (5)	C6-C7-C11	103-1 (6)
C2-C1-C5	105.6 (5)	C6-C7-C8A	119.8 (6)
C2-C1-C10	117.4 (6)	C6C7C8B	117.2 (11)
C5-C1-C10	121.3 (5)	C11-C7-C8A	106.9 (7)
04-C2-C1	111-4 (5)	C11-C7-C8B	135.8 (12)
O4-C2-C3	109.0 (6)	C1C10C14	117.6 (6)
C1-C2-C3	101.5 (6)	C1-C10-C9A	110.4 (7)
C2-C3-C4	102.9 (6)	C1C10C9B	109.8 (9)
O3-C4-C3	125.3 (7)	C14C10C9A	119-1 (7)
O3-C4-C5	124.8 (6)	C14-C10-C9B	97.6 (9)
C3-C4-C5	109.7 (6)	C7-C11-C12	108.4 (7)
C1-C5-C4	100.9 (5)	C7C11C13	130.6 (7)
C1-C5-C6	108.7 (5)	C12-C11-C13	121.0 (7)
CI-C5-C15	118.2 (5)	O1-C12-O2	122.6 (7)
C4—C5—C6	108.3 (5)	OI-C12-C11	107.9 (6)
C4-C5-C15	105-7 (5)	O2-C12-C11	129-5 (7)
C6C5C15	113.7 (5)	C7C8AC9A	113-1 (8)
01C6C5	110.5 (5)	C7C8 <i>B</i> C9 <i>B</i>	109 (2)
01-C6-C7	103-4 (5)	C10-C9A-C8A	113-1 (8)
C5-C6-C7	118-2 (5)	C10C9BC8B	116 (2)

^{*} Tables of H-atom coordinates, anisotropic thermal parameters and structure factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52087 (36 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

(Declercq, Germain, Van Meerssche, Demuynck, De Clercq & Vandewalle, 1980); crystal structure of psilostachyin-A (Wilzer, Han, Zambrano, Fronczek & Watkins, 1988); crystal structure of confertiflorin (Vargas, Fronczek, Fischer & Hostettmann, 1986); conformational asymmetry parameters (Duax & Norton, 1975).

References

- BALZA, F. & TOWERS, G. H. N. (1988). Phytochemistry, 27, 1421-1424.
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- DECLERCQ, J.-P., GERMAIN, G., VAN MEERSSCHE, M., DEMUYNCK, M., DE CLERCQ, P. & VANDEWALLE, M. (1980). Acta Cryst. B36, 213-215.
- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structure, Vol. I. New York: Plenum.
- EMERSON, M. T., HERZ, W., CAUGHLAN, C. N. & WITTERS, R. W. (1966). Tetrahedron Lett. pp. 6151-6156.

- FISCHER, N. H., OLIVIER, E. J. & FISCHER, H. D. (1979). Progress in the Chemistry of Organic Natural Products, edited by W. HERZ, H. GRISEBACH & G. KIRBY, Vol. 38, p. 253.
- FORTIER, S., DETITTA, G. T. & GRIECO, P. A. (1979). Acta Cryst. B35, 1742-1744.
- FRENZ, B. A. & OKAYA (1980). Enraf-Nonius Structure Determination Package, Enraf-Nonius, Delft, The Netherlands.
- HERZ, W., WATANABE, H., MIYAZAKI, M. & KISHIDA, Y. (1962). J. Am. Chem. Soc. 84, 2601–2610.
- JOHNSON, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- RODRIGUEZ, E., YOSHIOKA, H. & MABRY, T. J. (1971) Phytochemistry, 10, 1145-1154.
- TORIBIO, F. P. & GEISSMAN, T. A. (1968). Phytochemistry, 7, 1623-1630.
- VARGAS, D., FRONCZEK, F. R., FISCHER, N. H. & HOSTETTMANN, K. (1986). J. Natural Prod. 49, 133–138.
- WILZER, K. A., HAN, A.-C. C., ZAMBRANO, I. C., FRONCZEK, F. R. & WATKINS, S. F. (1988). Acta Cryst. C44, 1221-1223.
- YAO JIA-XING (1981). Acta Cryst. A37, 642-644.

Acta Cryst. (1989). C45, 2010–2012

1,4-Dibromohomocubane Ethylene Ketal

BY WILLIAM H. WATSON* AND RAM P. KASHYAP

Department of Chemistry, Materials Research Laboratory, Texas Christian University, Fort Worth, Texas 76129, USA

AND ALAN P. MARCHAND* AND V. VIDYASAGAR

Department of Chemistry, University of North Texas, PO Box 5068, Denton, Texas 76203, USA

(Received 5 April 1989; accepted 22 June 1989)

Abstract. 1,4-Dibromopentacyclo[4.3.0.0^{2,5}.0^{3,8}.0^{4,7}]nonan-9-one ethylene ketal (1), $C_{11}H_{10}Br_2O_2$, $M_r =$ 334.02, monoclinic, $P2_1/a$, a = 12.651 (4), b =6.197 (1), c = 14.301 (3) Å, $\beta = 107.15$ (2)°, V =1071.4 (4) Å³, Z = 4, $D_x = 2.071 \text{ g cm}^{-3}$, λ (Mo K α) $= 0.71073 \text{ Å}, \ \mu = 74.7 \text{ cm}^{-1}, \ F(000) = 648, \ T =$ 295 K, R = 0.0664 for 1365 reflections. The cage structure consists of four four-membered rings fused to a norbornane moiety (two fused five-membered rings) with an ethylene ketal attached to the methylene bridge of the norbornane. Two four-membered rings are planar and two are folded along a diagonal. The five-membered ethylene ketal ring is in an envelope conformation but the flap is not at the spiro fusion center with the cage. Molecular mechanics calculations give $\Delta H_f = 168.3$ kJ mol⁻¹ and E(strain) = 619.3 kJ mol⁻¹ with major contributions from

0108-2701/89/122010-03\$03.00

angle $(359.8 \text{ kJ mol}^{-1})$ and torsional strain $(272.0 \text{ kJ mol}^{-1})$.

Experimental. The title compound was synthesized by literature procedures (Chapman, Key & Tovne, 1970; Mehta, Srikrishna & Suri, 1980), and recrystallization vielded a colorless, poor-quality crystal (asymmetric peak profiles and backgrounds with some diffraction spots exceeding maximum scan width) of dimensions $0.50 \times 0.43 \times 0.35$ mm. After data collection an attempt was made to cleave the crystal to a smaller size to reduce the absorption correction; however, the crystal shattered into small fragments. All data were collected on a Nicolet $R3M/\mu$ update of a P2₁ diffractometer, ω scan technique $(3 \le 2\theta \le 50^\circ)$, variable scan rate of 4 to $29.3^{\circ} \text{ min}^{-1}$. graphite-monochromated Μο Κα radiation; lattice parameters from a least-squares refinement of 25 reflections $(23.16 \le 2\theta \le 28.84^{\circ})$; © 1989 International Union of Crystallography

2010

^{*} Authors to whom correspondence should be addressed.